Skip to content

Vertex AI Search tool for ADK

ADK 的 Vertex AI 搜索工具

Supported in ADKPython v0.1.0

The vertex_ai_search_tool uses Google Cloud Vertex AI Search, enabling the agent to search across your private, configured data stores (e.g., internal documents, company policies, knowledge bases). This built-in tool requires you to provide the specific data store ID during configuration. For further details of the tool, see Understanding Vertex AI Search grounding.

vertex_ai_search_tool 使用 Google Cloud Vertex AI 搜索,使智能体能够搜索您私有、配置的数据存储库(例如,内部文档、公司策略、知识库)。此内置工具要求您在配置期间提供特定的数据存储库 ID。有关该工具的更多详细信息,请参阅理解 Vertex AI 搜索基础

Warning: Single tool per agent limitation

This tool can only be used by itself within an agent instance. For more information about this limitation and workarounds, see Limitations for ADK tools.

警告:每个智能体单个工具限制

此工具只能在智能体实例中单独使用。 有关此限制和变通方法的更多信息,请参阅 ADK 工具的限制

# Copyright 2024 Google LLC
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import asyncio

from google.adk.agents import LlmAgent
from google.adk.runners import Runner
from google.adk.sessions import InMemorySessionService
from google.genai import types
from google.adk.tools import VertexAiSearchTool

# Replace with your Vertex AI Search Datastore ID, and respective region (e.g. us-central1 or global).
# Format: projects/<PROJECT_ID>/locations/<REGION>/collections/default_collection/dataStores/<DATASTORE_ID>
DATASTORE_PATH = "DATASTORE_PATH_HERE"

# Constants
APP_NAME_VSEARCH = "vertex_search_app"
USER_ID_VSEARCH = "user_vsearch_1"
SESSION_ID_VSEARCH = "session_vsearch_1"
AGENT_NAME_VSEARCH = "doc_qa_agent"
GEMINI_2_FLASH = "gemini-2.0-flash"

# Tool Instantiation
# You MUST provide your datastore ID here.
vertex_search_tool = VertexAiSearchTool(data_store_id=DATASTORE_PATH)

# Agent Definition
doc_qa_agent = LlmAgent(
    name=AGENT_NAME_VSEARCH,
    model=GEMINI_2_FLASH, # Requires Gemini model
    tools=[vertex_search_tool],
    instruction=f"""You are a helpful assistant that answers questions based on information found in the document store: {DATASTORE_PATH}.
    Use the search tool to find relevant information before answering.
    If the answer isn't in the documents, say that you couldn't find the information.
    """,
    description="Answers questions using a specific Vertex AI Search datastore.",
)

# Session and Runner Setup
session_service_vsearch = InMemorySessionService()
runner_vsearch = Runner(
    agent=doc_qa_agent, app_name=APP_NAME_VSEARCH, session_service=session_service_vsearch
)
session_vsearch = session_service_vsearch.create_session(
    app_name=APP_NAME_VSEARCH, user_id=USER_ID_VSEARCH, session_id=SESSION_ID_VSEARCH
)

# Agent Interaction Function
async def call_vsearch_agent_async(query):
    print("\n--- Running Vertex AI Search Agent ---")
    print(f"Query: {query}")
    if "DATASTORE_PATH_HERE" in DATASTORE_PATH:
        print("Skipping execution: Please replace DATASTORE_PATH_HERE with your actual datastore ID.")
        print("-" * 30)
        return

    content = types.Content(role='user', parts=[types.Part(text=query)])
    final_response_text = "No response received."
    try:
        async for event in runner_vsearch.run_async(
            user_id=USER_ID_VSEARCH, session_id=SESSION_ID_VSEARCH, new_message=content
        ):
            # Like Google Search, results are often embedded in the model's response.
            if event.is_final_response() and event.content and event.content.parts:
                final_response_text = event.content.parts[0].text.strip()
                print(f"Agent Response: {final_response_text}")
                # You can inspect event.grounding_metadata for source citations
                if event.grounding_metadata:
                    print(f"  (Grounding metadata found with {len(event.grounding_metadata.grounding_attributions)} attributions)")

    except Exception as e:
        print(f"An error occurred: {e}")
        print("Ensure your datastore ID is correct and the service account has permissions.")
    print("-" * 30)

# --- Run Example ---
async def run_vsearch_example():
    # Replace with a question relevant to YOUR datastore content
    await call_vsearch_agent_async("Summarize the main points about the Q2 strategy document.")
    await call_vsearch_agent_async("What safety procedures are mentioned for lab X?")

# Execute the example
# await run_vsearch_example()

# Running locally due to potential colab asyncio issues with multiple awaits
try:
    asyncio.run(run_vsearch_example())
except RuntimeError as e:
    if "cannot be called from a running event loop" in str(e):
        print("Skipping execution in running event loop (like Colab/Jupyter). Run locally.")
    else:
        raise e